Title Chemical engineering and separation operations		Code 1010704261010720471
Field		Year / Semester
Chemical Technology		3/6
Specialty		Course
•		core
Hours		Number of credits
Lectures: 0 Classes: - Laboratory: 4 Projects / semina	s: 20	8
		Language
		polish

Lecturer:

Lubomira Broniarz-Press, D.E., D.Sc., Prof. Institute of Technology and Chemical Engineering 60-965 Poznań, pl.M.Skłodowskiej-Curie 2

Phone: +48 61 665-2789

e-mail: Lubomira.Broniarz-Press@put.poznan.pl, mirka@box43.pl

http://www.fct.put.poznan.pl

Faculty:

Faculty of Chemical Technology

ul. Piotrowo 3 60-965 Poznań

tel. (061) 665-2351, fax. (061) 665-2852

e-mail: office dctf@put.poznan.pl

Status of the course in the study program:

fundamental

Assumptions and objectives of the course:

The student should to get a knowledge concerned with the theory and the praxis in the both, oneand multiphase flow design as well as with analysis of the heat and mass transfer in industrial operations.

Contents of the course (course description):

Shearing characteristics of a fluid. Flow of one-phase rheostable fluids. Non-Newtonian technology. Multiphase systems flows and processing operations. Separation operations (particle settling, sedimentation, filtration, flotation, distillation, rectification, crystallization). Heat exchange processes. Humidification and water cooling. Mass exchange processes: classification, mechanisms. Diffusion, mass transfer and absorbers. Heat-mass transfer processes. Optimization and enhancement of transfer processes.

Introductory courses and the required pre-knowledge:

Theoretical principles for currently analyzed questions in design and laboratory praxis.

Courses form and teaching methods:

laboratory + projects

Form and terms of complete the course - requirements and assessment methods:

Permanent control during the courses and laboratory training, preparation of the 2 individual projects and their defense, final examination after semester 6 (written-oral).

Basic Bibliography:

Additional Bibliography: